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In this note, we prove a quenched large deviation result for the overlap of a
p-spins interaction system at high temperature. The rate function of the large
deviation principle is proved to be deterministic, and some of its basic properties
are studied. Our result is based on a pure state result for a multidimensional
p-spins system combined with a careful application of the Gärtner–Ellis
Theorem
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1. INTRODUCTION

This paper is concerned with the usual p-spins system, that is a system of
N elementary spins represented by a configuration s=(s1,..., sN) ¥ SN=
{−, 1; 1}N, whose coordinates are governed by a random mean field type
interaction of range p. This kind of physical model is generally represented
by a Gibbs measure G=GN of the form dGN=[Z

g
N]
−1 exp(−bHg

N) dmN,
where mN is the uniform measure on SN, Hg is a Hamiltonian defined by

−Hg
N(s)=uN C

(i1,..., ip) ¥ AN

gi1,..., ipsi1 · · ·sip ,

with

uN=1
p!
2Np−1
2
1
2

AN={(i1,..., ip); 1 [ i1 < · · · < ip [N},



and where g={gi1,..., ip ; (i1,..., ip) ¥ AN} is a family of independent standard
Gaussian random variables. The random variable Zg

N is then a normalizing
constant converting GN into a (random) probability measure on SN, and b
stands for the inverse of the temperature parameter. We will denote by
OfPg the average of a function f defined on SN with respect to GN, that is

OfPg=[Z
g
N]
−1 C
s ¥ SN

f(s) exp(−bHg
N(s)). (1)

After Parisi’s analysis of the SK model (see, e.g., ref. 1), it became
clear that one of the central objects of study in the spin glasses theory was
the overlap R1, 2 defined by

R1, 2=
1
N

C
i [N
s1i s

2
i ,

where s1, s2 are taken as two independent configurations under GN. Phy-
sicists are generally mostly concerned by the behavior of this quantity in
the low temperature regime, and by the related phenomenon of non-self-
averaging (see, e.g., refs. 2 and 3 for rigorous results, as well as ref. 1 for a
general discussion on the topic). On the other hand, at high temperature,
the self averaging for R1, 2 takes place, and one can expect to understand in
great details the limiting system defined by GN when NQ., especially for
quantities like the overlap. While this kind of sharp results is mostly of
mathematical interest, it is still a challenging problem to try to understand the
detailed behavior of GN. Among the papers adressing that issue for the SK
model, let us mention for instance ref. 4 for the fluctuations of the free energy,
ref. 5 for some identities on the overlap distribution, and ref. 6 for a detailed
description of many fine asymptotic properties ofGN at high temperature.
It is then a natural, though relatively unadressed question (see

however Bovier et al., (7) where a central limit theorem for the fluctuations
of the normalization constant Zg

N of the p-spins model is established,
following the stochastic calculus approach initiated in ref. 8) to try to get
this kind of sharp results for the p-spins model. The aim of this note is then
to make one step in that direction, and we will obtain a quenched (with
repect to the disorder g) large deviation principle for R1, 2 as NQ.,
namely we will prove that if b is small enough, then almost surely, for any
Borelian subset C of R, we will have

− inf{Lg(x); x ¥ C°} [ lim inf
NQ.

1
N
log(O1C(R1, 2)Pg)

[ lim sup
NQ.

1
N
log(O1C(R1, 2)Pg) [ − inf{Lg(x); x ¥ C̄},
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with a complete (though implicit) characterization of the rate function Lg,
which in particular happens to be a deterministic function. This constitutes
a generalization of ref. 9, giving the same type of result for the SK model.
However, a first difference with respect to ref. 9 can already be stressed at
this stage: while ref. 9 is mainly concerned with the study of the multidi-
mensional SK model, we will try to delve deeper into the precise statement
and proof of the large deviation principle itself, which will lead us to
combine both spin glasses and large deviation techniques. Let us also
mention some of the possible generalizations of this work: first we believe
that the case of a p-spin model with external field, whose study is an
ongoing work started in ref. 10, can be handled with the same methods as
ours, just changing the reference measure m we will consider at Section 2.
A more challenging result would be to obtain the annealed large deviation
principle for R1, 2, but the powerful methodology elaborated in ref. 11
seems to be hard to adapt to our high dimensional case.
As in the SK case, the large deviation result for R1, 2 can be reduced to

a L2-limit computation for the overlap of a 2-dimensional p-spin system.
Since there is no additional difficulty to treat the same kind of problem for
a d-dimensional system, we will perform these computations at Section 2.
Then, a detailed statement and proof of the main result will be given at
Section 3. In the sequel, all the constants, that can change from line to line,
will be denoted by o, and we will stress their dependence on the parameters
of the system by writing od, od, p, etc.

2. MULTIDIMENSIONAL p-SPINS MODEL

As in ref. 9, our large deviation principle will heavily rely on a pure
state type result for a multidimensional p-spins model. We will describe
precisely this model in the next subsection, and then derive our result.

2.1. Description of the Model

Let S be the ball of radius d1/2 in Rd. The state space of the multi-
dimensional p-spins model is

SN={s=(s1,..., sN); sj ¥ S, j [N}.

For j [N, we will write sj={sj(u); u [ d}. The Hamiltonian under con-
sideration on SN will be of the form

−HN(s)=uN C
(i1,..., ip) ¥ AN

C
u [ d
gi1,..., ipsi1 (u) · · ·sip (u), (2)
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where uN and AN are defined as before. Let m be a probability measure
on S, and set

ZN=F
SN
exp(−bHN(s)) dméN(s).

Let n \ 1. We will consider in this section the Gibbs measure defined on
test functions f: (SN)nQ R by

OfP=Z−nN F
SN
f(s1,..., sn) exp 1 − C

l [ n
bHN(s l)2 D

l [ n
dméN(s l). (3)

Notice that the dependence on n is omitted in the left hand side of the
above expression.
For N \ 2, let us split now this integral into an integral for the N−1

first spins on one hand, and the last spins on the other hand, a basic
step known as the cavity method. For n \ 1 and a given test function
f: (SN)nQ R, by some easy algebraic manipulations, we obtain the
following relation:

OfP=Z−nN OAv fEnP− .

In this last expression, we have used the following conventions: for a
function j: SnQ R we set

Av j=F
Sn
j(e1,..., en) D

l [ n
dm(e l).

For a given s ¥ SN, we write s=(r, e), where r ¥ SN−1 and e ¥ S. For
u [ d, we denote then by T(r(u)) the vector

T(r(u))={gI(u); I=(i1,..., ip−1) ¥ BN−1},

where

BN={(i1,..., ip−1); 1 [ i1 < · · · < ip−1 [N}

gI(u)=si1 (u) · · ·sip−1 (u), I ¥ BN−1.

Set also

g(T(r(u)))=buN C
I ¥ BN−1

gIgI(u).
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Eventually, denote by b− the inverse temperature given by

b−=1
N−1
N
2
p−1
2

b, (4)

and O.P− the averaging with respect to GN at temperature b− . Then En and
ZN are given by

En=exp 1 C
l [ n

C
u [ d
g(T(r l(u))) e l(u)2

ZN=OAv E1P−=7F
S
exp 1 C

u [ d
g(T(r(u))) e(u)2 dm(e)8

−

Let us end this introduction by an elementary estimate that will be
useful later on:

Lemma 2.1. For u, v [ d and l, lŒ [ n, set

R l, lŒ(u, v)=
1
N

C
i [N
s li(u) s

lŒ
i (v).

Then there exists a positive constant od, p such that

:u2N C
I ¥ BN−1

g lI(u) g
lŒ
I (v)−

p
2
(R l, lŒ(u, v))p−1 : [ od, p

N
.

Proof. We have

(R l, lŒ(u, v))p−1= C
i1,..., ip−1 [N

s li1 (u) s
lŒ
i1 (v) · · ·s

l
ip−1 (u) s

lŒ
ip−1 (v).

Hence

: 1
Np−1

C
I ¥ BN−1

g lI(u) g
lŒ
I (v)−

1
(p−1)!

(R l, lŒ(u, v))p−1 :

[
1

(p−1)!Np−1
C
I ¥ CN

|g lI(u) g
lŒ
I (v)|,

where

CN={1 [ i1 · · · [ ip−1 [N; There exists j ] k satisfying ij=ik}.
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But |CN|
Np−1

[
cp
N for a constant cp > 0, and g

l
I(u) [ d

(p−1)/2. Thus

: 1
Np−1

C
I ¥ BN−1

g lI(u) g
lŒ
I (v)−

1
(p−1)!

(R l, lŒ(u, v))p−1 : [ cdd
p−1

N
,

from which our lemma is then easily deduced. L

Let us also recall that, using some trivial combinatorics, we get

|(p−1)!| BN−1 |−Np−1| [ opNp−2, (5)

for a constant op > 0.

2.2. Decoupling the Last Spin

In this subsection, we will transform our original measure into a
measure under which the last spin is made independent of the others
through a (carefully chosen) continuous path. The consequences of this
construction will be a crucial step to get the limiting behavior of the
overlap. The continuous path we will consider is given, for u [ d, t ¥ [0, 1],
by the following transformation of g(T(r(u))):

gt(T(r(u)))=t1/2g(T(r(u)))+(1−t)1/2 buN C
I ¥ BN−1

YI(u)

+
b2u2N |BN−1 |

2
(1−t) C

v [ d
e(v)(m(u, v)−k(u, v)), (6)

where {m(u, v), k(u, v); u, v [ d} are two given symmetric matrices whose
precise entries will be determined later on. In the last expression, {YI(u);
I ¥ BN−1, u [ d} is a family of centered Gaussian random variables, inde-
pendent of the disorder g, with covariance structure given by

E[YI(u) YJ(v)]=k(u, v) 1I=J, I, J ¥ BN−1, u, v [ d. (7)

In the right hand side of (6) as well as in the sequel of the paper, |D| will
denote the size of a given finite set D. Notice that the second term in the
right hand side of (6) is the one that allows us to make the Nth spin inde-
pendent of the others for t=0, the last term of this same expression being a
correction term taking into account the fact that we will consider both
independent and correlated copies of the Gibbs measure (3).
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For t ¥ [0, 1] and n \ 1, define

OfPt=Z
−n
t OAv fEn, tP− ,

where

En, t=exp 1 C
l [ n

C
u [ d
gt(T(r l(u))) e l(u)2

Zt=OAv E1, tP− .

Set also nt(f)=E[OfPt] for t ¥ [0, 1], and n(f)=n1(f). The first useful
identity related to (6) is obtained in the following proposition:

Proposition 2.2. Set k l, lŒ(u, v)=k(u, v) if l ] lŒ, and k l, l(u, v)=
m(u, v). Then, for all bounded measurable functions f: (SN)nQ R, we have

n −t(f)=b
2u2N C

I ¥ BN−1

C
u, v [ d

1 C
1 [ l < lŒ [ n

nt(fe l(u) e lŒ(v)[g
l
I(u) g

lŒ
I (v)−k

l, lŒ(u, v)]2

−2n C
l [ n
nt(fe l(u) en+1(v)[g

l
I(u) g

n+1
I (v)−k

l, n+1(u, v)])

−nnt(fen+1(u) en+1(v)[g
n+1
I (u) g

n+1
I (v)−k

n+1, n+1(u, v)])

+n(n+1) nt(fen+1(u) en+2(v)[g
n+1
I (u) g

n+2
I (v)−k

n+1, n+2(u, v)])).
(8)

Proof. Notice that

“tEn, t

En, t
=C
l [ n

C
u [ d
e l(u) 1 1

2t1/2
g(T(r l(u)))−

1
2(1−t)1/2

buN C
I ¥ BN−1

YI(u)

−
b2u2N
2
|BN−1 | C

v [ d
e l(v)(m(u, v)−k(u, v))2 .

Thus n −t(f)=A−B−C, with

A=
1
2t1/2

C
u [ d

E 5Z−nt C
l [ n

OAv fe l(u) g(T(r l(u))) En, tP−

−nZ−(n+1)t OAv fen+1(u) g(T(rn+1(u))) En+1, tP− 6 ,
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B defined by

B=
buN

2(1−t)1/2
C
u [ d

C
I ¥ BN−1

E[Z−nt C
l [ n

OAv fe l(u) YI(u) En, tP−

−nZ−(n+1)t OAv fen+1(u) YI(u) En+1, tP−],

and

C=
b2u2N |BN−1 |

2
C
u, v [ d

E 5Z−nt C
l [ n

OAv fe l(u) e l(v) D(u, v) En, tP−

−nZ−(n+1)t OAv fen+1(u) en+1(v) D(u, v) En+1, tP− 6 ,

where we have set D(u, v)=m(u, v)−k(u, v).
Let us simplify the term B: for r \ 1, a smooth function F: R rQ R

growing at most exponentially, and a Gaussian family (g, g1,..., gr), we
have

E[gF(g1,..., gr)]=C
k [ r

E[gk g] E[“xkF(g1,..., gr)]. (9)

Furthermore, for I ¥ BN−1, u [ d,

“YI(u)En, t=C
l [ n
(1−t)1/2 buNe l(u) En, t.

Hence, integrating first with respect to the variables YI(u) and using rela-
tion (9), we get (recall that the covariance structure of YI is given by (7))

B=
b2u2N
2

C
I ¥ BN−1

C
u, v [ d

k(u, v) E 5Z−nt C
l, lŒ [ n

OAv fe l(u) e lŒ(v) En, tP−

−nZ−(n+1)t C
l [ n

OAv fe l(u) en+1(v) En+1, tP−

−nZ−(n+1)t C
l [ n+1

OAv fe l(u) en+1(v) En+1, tP−

+n(n+1) Z−(n+2)t OAv fen+1(u) en+2(v) En+2, tP− 6 .

The same kind of calculations can be performed for A, and then putting
together A, B and C, we get the announced result. L
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Let us assume now that for all u, v [ d, we have |k(u, v)| [ dp−1 and
|m(u, v)| [ dp−1. Then the following consequence of the last proposition
holds true.

Proposition 2.3. Let f: (SN)nQ R+ be a non-negative function.
Then, for N large enough,

nt(f) [ exp(5b2dp+2n2p) n(f).

Proof. Since |gI(u)| [ d (p−1)/2 for all l [ n, I ¥ BN−1, u [ d, a simple
estimate performed on the expression (8) gives, for N large enough,

n −t(f) [ −(3n
2+2n) b2u2Nd

p+2 |BN−1 | nt(f)

[ −5b2dp+2n2pnt(f),

where we have used the fact that limNQ. u
2
N |BN−1 |=

p
2 , and hence

u2N |BN−1 | [ p for N large enough. Integrating the last relation between t
and 1, we get

log(n(f))− log(nt(f)) \ −5b2dp+2n2p(1−t) \ −5b2dp+2n2p,

which yields the desired result. L

2.3. Study of a Quadratic Form

Besides the overlap R1, 2, it will be useful in the sequel to consider the
quantity

R(u, v)=
1
N

C
i [N
si(u) si(v), u, v [ d.

Let Q={q(u, v); u, v [ d} be a symmetric matrix such that Qp−1 —
{[q(u, v)]p−1; u, v [ d} defines a positive quadratic form. Let S be a d-dimen-
sional matrix satisfying the same property. WhenNQ., (R1, 2, R) will tend
to a couple (Q, S) as above, solution to the equation

q(u, v)=E[Z−2Av x1(u) x2(v)F2] (10)

s(u, v)=E[Z−1Av x(u) x(v)F1], (11)
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whereFn and Z are defined by

Fn=exp 1 C
l [ n

11p
2
21/2 b C

w [ d
Y(w) x l(w)

+
b2p
4

C
w, z [ d

x l(w) x l(z)([s(w, z)]p−1−[q(w, z)]p−1)22 (12)

and

Z=Av F1.

In all the preceding formulae, {Y(u); u [ d} stands for a Gaussian vector
with correlation matrix Qp−1. We will write the system of equations (10)
and (11) under the form

(Q, S)=F(Q, S)=(F (1)(Q, S), F (2)(Q, S)). (13)

Note that we impose the positivity of the quadratic form Qp−1 instead
of Q, as could be expected. This can be justified by the following fact: if
{a(u); u [ d} is a given vector in Rd, we will have

L2− lim
NQ.

7 C
u, v [ d

a(u) g1I(u) g
2
I(v) a(v)8= C

u, v [ d
a(u)[q(u, v)]p−1 a(v).

But

7 C
u, v [ d

a(u) g1I(u) g
2
I(v) a(v)8=7 C

u [ d
a(u) gI(u)8

2

\ 0.

The aim of this subsection is to prove the following claim:

Proposition 2.4. If b is small enough, there is a unique pair (Q, S)
such that |q(u, v)|K |s(u, v)| [ d for all u, v [ d, solution to the system (10)
and (11).

Proof. We will divide this proof in 2 steps

Step 1. The equation (10) defining Q is of the form q(u, v)=
F (1)u, v(Q, S) for a given F

(1)
u, v: R

d×d×Rd×dQ R, and F (1)u, v is again of the form

F (1)u, v(Q, S)=Yu, v(Q
p−1, Sp−1)

for a function Yu, v: Rd×d×Rd×dQ R.
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Next, it is easily seen that |F (1)u, v(Q, S)| [ d for all u, v [ d and Q, S
defined as above. Furthermore, to show our claim, it is enough to show
that

|“q(w, z)F
(1)
u, v(Q, S)|K |“s(w, z)F (1)u, v(Q, S)| [ od, pb2,

for all u, v, w, z [ d. Hence, by boundedness of Fu, v, it is enough to show
that ||NYu, v(K, M)|| [ od, pb2 for all K, M such that

sup{|k(u, v)|K |m(u, v)|; u, v [ d} [ d.

We will first investigate the behavior of the derivative of Yu, v with respect
to the coefficients k(u, v).

Step 2. Let K={k(u, v); u, v [ d} and K̂={k̂(u, v); u, v [ d} be two
positive symmetric matrices, and Y, Ŷ two independent Gaussian vectors
with respective covariance matrices K and K̂. Set, for w, z [ d, t ¥ [0, 1],

Yt(w)=t1/2Y(w)+(1−t)1/2 Ŷ(w)

kt(w, z)=tk(w, z)+(1−t) k̂(w, z),

and related to those quantities, set

Fn, t=exp 1 C
l [ n

11p
2
21/2 b C

w [ d
Yt(w) x l(w)

+
b2p
4

C
w, z [ d

x l(w) x l(z)([m(w, z)]p−1−[kt(w, z)]p−1)22 ,

and

q(u, v)=E[Z−2t Av x1(u) x2(v)F2, t],

where

Zt=Av F1, t.

The same kind of computations as in the proof of relation (8) show that
k −u, v(t)=A−B+C, with

A=b 1 p
2t
2
1
2

C
w [ d

E 5Z−2t Av x1(u) x2(v) x2(w) Y(w)F2, t

−Z−3t Av x1(u) x2(v) x3(w) Y(w)F3, t6 ,
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the quantity B defined by

B=b 1 p
2(1−t)
2
1
2

C
w [ d

E 5Z−2t Av x1(u) x2(v) x2(w) Ŷ(w)F2, t

−Z−3t Av x1(u) x2(v) x3(w) Ŷ(w)F3, t6 ,

and

C=
b2p
2

C
w, z [ d

E 5Z−2t Av x1(u) x2(v) x2(w) x2(z) a(u, v)F2, t

−Z−3t Av x1(u) x2(v) x3(w) x3(z) a(u, v)F3, t6 ,

with a(u, v)=[k(u, v)]p−1−[k̂(u, v)]p−1. Integrating by parts with respect
to Y(w) in A gives

A=
b2p
2

C
w, z[ d

E[Z−2t Av x1(u) x2(v) x2(w) x2(z)F2, t

−Z−2t Av x1(u) x2(v) x2(w) x1(z)F2, t−3Z
−3
t Av x1(u) x2(v) x3(w) x3(z)F3, t

−3Z−4t Av x1(u) x2(v) x3(w) x4(z)F4, t],

and hence

|A| [ 4b2pd4.

The same kind of bound can be obtained for B. A direct estimate for C is
given by

|C| [ 2pdp+1b2.

Thus, for all t ¥ [0, 1],

|Y −u, v(t)| [ 10pd
p+1b2. (14)

This bound is of course independent of t, and by continuity, taking the
value of Y −u, v at t=1 gives us the desired bound on the derivative of
Yu, v(K, M) with respect to K. The same kind of calculations can be leaded
for the derivatives with respect to M, and for the equation (11) defining S,
which ends the proof. L
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2.4. Limit Behavior of the Overlap

In this subsection, for u, v [ d and l, lŒ [ n, the following quantities
will be under consideration:

R(u, v)=
1
N

C
i [N
si(u) si(v), R l, lŒ(u, v)=

1
N

C
i [N
s li(u) s

lŒ
i (v). (15)

In the remainder of the section, we will assume that for all u, v [ d, k(u, v)
(resp. m(u, v)) can be written as [q(u, v)]p−1 (resp. [s(u, v)]p−1) for some
symmetric matrices Q, S such that |q(u, v)|K |s(u, v)| [ d1/2. Using the
results of Section 2.2, one gets the

Proposition 2.5. There exists a strictly positive constant od, p such
that for all test functions f: (SN)nQ R, we have

|n −t(f)| [ od, pb
2 3n1/2t 1 C

u, v [ d
(R1, 2(u, v)−q(u, v))22

+n1/2t 1 C
u, v [ d

(R(u, v)−s(u, v))22+1
N
4 n1/2t (f).

Proof. Going back to the expression of n −t(f) given by (8), let us
study the term

M l, lŒ — u2N C
u, v [ d

C
I ¥ BN−1

e l(u) e lŒ(v)(g lI(u) g
lŒ
I (v)−[q

l, lŒ(u, v)]p−1).

Setting

a l, lŒI (u, v)=u
2
N(g

l
I(u) g

lŒ
I (v)−[q

l, lŒ(u, v)]p−1),

by Cauchy–Schwarz inequality, we have

|M l, lŒ|=: C
u, v [ d

e l(u) e lŒ(v) C
I ¥ BN−1

a l, lŒI (u, v) :

[ 1 C
u, v [ d

(e l(u) e lŒ(v))22
1/2 1 C

u, v [ d

1 C
I ¥ BN−1

a l, lŒI (u, v)2
221/2

[ d2 1 C
u, v [ d

1 C
I ¥ BN−1

a l, lŒI (u, v)2
221/2.
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Furthermore,

C
I ¥ BN−1

a l, lŒI (u, v)=u
2
N C
I ¥ BN−1

g lI(u) g
lŒ
I (v)−u

2
N |BN−1 | [q

l, lŒ(u, v)]p−1.

Now, by inequality (5), we have

:u2N |BN−1 | [q l, lŒ(u, v)]p−1−
p
2
[q l, lŒ(u, v)]p−1 : [ opd

p−1

N
,

and combining this fact with the result of Lemma 2.1, it is easily seen that

|M l, lŒ| [ od, p 1 C
u, v [ d

1[R l, lŒ(u, v)]p−1−[q l, lŒ(u, v)]p−1+1
N
2221/2 .

Moreover, if |q l, lŒ(u, v)| [ d, we get

|[R l, lŒ(u, v)]p−1−[q l, lŒ(u, v)]p−1| [ pdp−2 |R l, lŒ(u, v)−q l, lŒ(u, v)|,

and thus

|M l, lŒ| [ od, p 31 C
u, v [ d

(R l, lŒ(u, v)−q l, lŒ(u, v))22
1/2

+
1
N
4 .

The other terms in (8) can be treated using the same method, and applying
Cauchy–Schwarz’s inequality to n −t(f) yields the announced result. L

Lemma 2.6. Let Q be the solution to (10) and f− be a test function
from SnN−1 to R. Then, for all u, v [ d,

|n0(f−e1(u) e2(v))− n0(f−) q(u, v)| [
od, p

N
||f−||..

Proof. It is easily seen that

n0(f−e1(u) e2(v))=E[Of−P−] E[W−2
N Av x1(u) x2(v) G2],

with YN(u)=uN ; I ¥ BN−1YI(u) and

Gn=exp 1 C
l [ n

1 C
w [ d
YN(w) x l(w)

+
b2u2N
2
|BN−1 | C

w, z [ d
x l(w) x l(z)([s(w, z)]p−1−[q(w, z)]p−1)22 ,

(16)
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the random variableWN being defined by

WN=Av G1.

Note that YN is a Gaussian random vector with covariance matrix given by

E[YN(u) YN(v)]=s
2
N[q(u, v)]

p−1,

where, using relation (5),

s2N=u
2
N |BN−1 |=

p
2
+d(N), (17)

and d(N) [
op

N . Consider now the function ku, v defined on R+ by

ku, v(s)=E[W−2
s Av x1(u) x2(v) G2(s)],

where

Gn(s)=exp 1 s C
l [ n

1 C
w [ d
Y(w) x l(w)

+
b2s2

2
|BN−1 | C

w, z [ d
x l(w) x l(z)([s(w, z)]p−1−[q(w, z)]p−1)22

and

Ws=Av E1(s),

Y being a Gaussian random vector with covariance Qp−1. Then

n0(f−e1(u) e2(v))=E[Of−P−] ku, v(sN).

It can be shown, as for relation 8 and Proposition 2.4, that ku, v is a C1

function with bounded derivative on R+. By relation (17), we will also get
|ku, v(sN)−ku, v((p/2)1/2)| [

op

N . But Q is the solution to the equation

q(u, v)=ku, v 11
p
2
2
1
22 .

Thus |ku, v(sN)−q(u, v)| [
op

N , which ends the proof. L

We can now state the main result of this section.
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Theorem 2.7. There exists a b0 such that if b [ b0, then

UN — C
u, v [ d

n((R1, 2(u, v)−q(u, v))2) [
od, p

N
,

VN — C
u, v [ d

n((R(u, v)−s(u, v))2) [
od, p

N
.

Proof. This proof is borrowed from ref. 12, Theorem 2.11.1, and is
included here for sake of completeness: using symmetry among sites, we
have UN=n(f), with

f= C
u, v [ d

(e1(u) e2(v))(R1, 2(u, v)−q(u, v)).

Moreover

f2 [ d2 C
u, v [ d

(R1, 2(u, v)−q(u, v))2,

and setting

R1, 2− (u, v)=
1
N

C
i [N−1

s1i (u) s
2
i (v),

it is easily checked that

|R1, 2(u, v)−R1, 2− (u, v)| [
d
N
.

Hence, appealing to Lemma 2.6, we get

|n0(f)| [
od, p

N
.

On the other hand, a direct applicaction of Proposition 2.3 yields nt(f) [
od, pn(f) for all positive functions f: (SN)nQ R. Combining this result
with Proposition 2.5 and the fact that n(f) [ n0(f)+supt ¥ [0, 1] |n

−

t(f)|,
we get

UN=n(f) [ od, p 1
1
N
+b2U1/2N (U

1/2
N +V

1/2
N )2 .

The same kind of arguments lead to the inequality

VN [ od, p 1
1
N
+b2V1/2N (U

1/2
N +V

1/2
N )2 ,

from which our claim follows. L
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Remark 2.8. In all the previous computations, we did not stress the
dependence of the quantities we manipulated upon the reference measure m.
However, many of our estimates just relied on the fact that the support of
m is the bounded set S, and that m is a measure of unit mass. Thus, our
estimates will be uniform in m, which means in particular that the constants
od, p in Theorem 2.7, and the estimate (14) on the contraction property of
the function F defining Q and S, are independent of m.

3. LARGE DEVIATIONS PRINCIPLE

In this Section, we will prove, for a quenched disorder g, an almost
sure large deviations principle for the overlap R1, 2 of two independent
configurations under the Gibbs measure GN of the one dimensional p-spins
system introduced at Section 1. This large deviations result will be a con-
sequence of the application of the Gärtner–Ellis Theorem, and thus, the
natural quantity under consideration, trivially defined for all l ¥ R, will be

LN(l)=log(Oexp(lR1, 2)Pg), (18)

where the notation O ·Pg has been introduced at (1). Our first task will be
to describe the asymptotic behavior of LN as a function of l.

Proposition 3.1. Let LN be the function defined by (18). Then,
almost surely, we have, for all l ¥ R,

lim
NQ.

1
N
LN(Nl)=L(l),

where L(l) can be expressed as L(l)=>l0 sg(1, 2) dg, and sg is the solution
to (11), where the average Av is based on a measure mg on S={e ¥ R2;
[e(1)]2+[e(2)]2=2} given by

mg(e(1), e(2))=
; j, k ¥ {−1,+1} exp(gjk) d(j, k)(e(1), e(2))

4 cosh(4g)
. (19)

Proof. This proof will be divided into several steps

Step 1. For N \ 1, and l ¥ R, set jN(l)=E[N−1LN(Nl)], that is

jN(l)=
1
N

E 5log 17exp 1l C
i [N
s1i s

2
i
28

g

26 .
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Then it is easily seen that jN is a differentiable function, and that

j −N(l)=E 5Dl
Nl
6 ,

with

Dl=
1
N
7 C
i [N
s1i s

2
i exp 1l C

i [N
s1i s

2
i
28

g

Nl=7exp 1l C
i [N
s1i s

2
i
28

g
.

Note then that in the last expression, we have

Dl=
1
N

C
s
1, s2 ¥ SN

C
i [N

s1i s
2
i exp 1l C

i [N

s1i s
2
i
2 exp(−bHN(s1)−bHN(s2)).

To make the link with the notations of Section 2, set si=(s
1
i , s

2
i )=

(si(1), si(2)) for i [N. Then Dl can be written as

Dl=
(4 cosh(l))N

N
C
i [N

F
SN
si(1) si(2) exp(−bHN(s)) dm

éN
l (s),

where HN is defined by (2) for S taken as the ball of radius 21/2 in R2, and
ml as in (19). Thus, taking up the notations of Section 2, we have

j −N(l)=E[OR(1, 2)P].

In order to stress the dependence of this quantity upon l, we will write

j −N(l)=E[OR(1, 2)Pl].

Step 2. We have shown in Theorem 2.7 that for all l ¥ R,

lim
NQ.

j −N(l)= lim
NQ.

E[OR(1, 2)Pl]=sl(1, 2).

Moreover, since R(1, 2) is a quantity bounded by 2 almost surely, the
dominated convergence theorem can be applied, and noting that jN(0)=0,
we get, for all l ¥ R,

lim
NQ.

jN(l)=F
l

0
sg(1, 2) dg=L(l).
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Furthermore, since all the estimates of Section 2 are uniform with respect
to the reference measure m (see Remark 2.8), we have

|jN(l)−L(l)| [
od, p |l|
N
. (20)

Step 3. For a fixed l ¥ R, let us study now the almost sure behavior
of the random variable XN(l)=

1
N LN(Nl). Setting again s=(s

1, s2) ¥ S2N,
we have

[XN(l)](g)=
1
N
3 log 1 C

s ¥ S
2
N

exp(a(s) · g+bl(s))2

− log 1 C
s ¥ S

2
N

exp(a(s) · g)24,

where g={gI; I ¥ AN} and

a(s)={buN(g
1
I+g

2
I); I ¥ AN}, bl(s)=l C

i [N
s1i s

2
i ,

with g lI=s
l
i1 · · ·s

l
ip for all I=(i1,..., ip ¥ AN). Now, for the Euclidian norm

|| · || taken in R |AN|, we have

||a(s)|| [ buN(2 |AN |)1/2 [ bN1/2,

which immediately gives, for two vectors g, ĝ ¥ R |AN|,

|[XN(l)](ĝ)−[XN(l)](g)| [
b

N1/2
||ĝ−g||.

Thus, by the classical concentration inequality for Gaussian vectors, we
have, for all u > 0,

P(|XN(l)−jN(l)| \ u) [ 2 exp 1 −
Nu2

4b2
2 .

Hence, invoking (20), and taking u=N−1/4, we get

P(|XN(l)−L(l)| \N−1/4+od, p |l| N−1) [ 2 exp 1 −
N1/2

4b2
2 ,
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which gives

a.s. − lim
NQ.

XN(l)=L(l),

by a simple application of the Borel–Cantelli Lemma.

Step 4. We should now check that almost surely, XN(l) tends to
L(l) for all l ¥ R. This is certainly true for all l ¥Q. Now, it is easily
checked that lWXN(l) is a differentiable function on R, and that

X −N(l)=OR(1, 2)P.

Hence, X −N(l) is trivially bounded by 2, and since L is also a continuous
function, we get the desired convergence. L

For x ¥ R, set now

Lg(x)=sup{lx−L(l); l ¥ R}. (21)

Turning to the main point of this paper, we get the following result:

Theorem 3.2. There exists a b0 > 0 such that, for all b [ b0, for
almost every realization of the disorder g, we have

(i) For any closed set F … R,

lim sup
NQ.

1
N
log(O1F(R1, 2)Pg) [ − inf{Lg(x); x ¥ F}.

(ii) For any open set G … R,

lim inf
NQ.

1
N
log(O1G(R1, 2)Pg) \ − inf{Lg(x); x ¥ G}.

Proof. Note that DL — {l; L(l) <.}=R. The bounds for F and G
given by the Gärtner–Ellis Theorem (we refer to ref. 13 for an account on
this Theorem as well as for all further notations and concepts on the large
deviations principle) are

lim sup
NQ.

1
N
log(O1F(R1, 2)Pg) [ − inf{Lg(x); x ¥ F}

lim inf
NQ.

1
N
log(O1G(R1, 2)Pg) \ − inf{Lg(x); x ¥ G 5F},
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where F is the set of exposing points of L. We will show now that
(−1; 1) …F. From ref. 13, Lemma 2.3.9, if there exists a given l ¥ R such
that x=LŒ(l), then x ¥F. Let us show then that this happens for all
x ¥ (−1; 1).
We have seen that L is differentiable on R, and that LŒ(l)=sl(1, 2).

But the equation (11) defining (Q, S) involves a function F (see definition
(13)) which is differentiable with respect to Q, S and l (the first two claims
have been shown in the proof of Proposition 2.4 and the third one follows
by the same kind of arguments), and contracting with respect to Q and S
for small enough b, uniformly in l ¥ R (see Remark 2.8). This yields easily
the continuity of LŒ on R.
Let us investigate now the asymptotic behavior of LŒ: going back to

Eqs. (10)–(12), we can write

sl(1, 2)=E 5Dl
Nl
6 ,

where, setting a(w, z)=[sl(w, z)]p−1−[ql(w, z)]p−1 and a=(p/2)1/2 b,
Dl and Nl are given by

Dl= C
e(1), e(2) ¥ {−1; 1}

exp(le(1) e(2)) e(1) e(2)

× exp 1a C
w [ 2
Y(w) e(w)+

a2

2
C
w, z [ 2

e(w) e(z) a(w, z)2=Al−Bl,

with

Al=2 exp 1
a2

2
(a(1, 1)+2a(1, 2)+a(2, 2))+l2 cosh(a(Y(1)+Y(2)))

Bl=2 exp 1
a2

2
(a(1, 1)−2a(1, 2)+a(2, 2))−l2 cosh(a(Y(1)−Y(2))),

and

Nl=Al+Bl.

Then, it is easily checked that

a.s. − lim
lQ.

Dl
Nl
=1, a.s. − lim

lQ −.

Dl
Nl
=−1.
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By dominated convergence, we hence get that

lim
lQ.
LŒ(l)=1, lim

lQ −.
LŒ(l)=−1.

The continuity of LŒ yields now (−1; 1) …F. On the other hand, one can
also easily verify that

lW
Al−Bl
Al+Bl

=
1− AlBl
1+AlBl

is a strictly increasing function. Hence |LŒ(l)| < 1 for all l ¥ R. This means,
by definition (21) of Lg, that Lg(x)=+. whenever |x| \ 1. Hence,

inf{Lg(x); x ¥ G 5F} [ inf{Lg(x); x ¥ G 5 (−1; 1)}=inf{Lg(x); x ¥ G},

which ends the proof. L
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